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Scaling exponents of sandpile-type models of self-organized criticality
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Critical scaling exponents for eight sandpile-type systems that display self-organized criticality are deter-
mined numerically. These results are consistent with previous results where available and provide a more
extensive, accurate, and consistent set of exponents than has previously been published for the set of models
overall. Several theoretical interrelationships between the various exponents are verified.
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[. INTRODUCTION level of accuracy. Increasing the number and accuracy of
known exponents will allow theoretical estimates to be tested
The concept of self-organized criticali(¢OC was intro-  more rigorously and allow for differentiation between mod-
duced by Bak, Tang, and Wiesenfdlt] to explain the fre- els that lie in different universality classes but have expo-
quent occurrence of fLhoise in nature. Typ|ca||y SOC oc- hents that are close to one another. An example of this was
curs when a system driven toward instability reaches &tudied by Ben-Hur and Biharfi1], who showed that the
critical state in which there is a statistical balance betweefiwo-state model introduced by Manf®2] lay in a different
driving and relaxation. This state exhibits sporadic relaxatiortniversality class from the original Bak-Tang-Wiesenfeld
via avalanches of energy release. These avalanches havdBal'W) model[1], contrary to Manna’s original claim. Many
power-law distribution of sizes and establish power-law spaother models in use also have few accurately known expo-
tial and temporal correlations in the system. The SOC state igents.
characterized by power-law distributions and corresponding In this paper we improve the accuracy of known expo-
scaling exponents of various physical quantities such as th@ents for several models by increasing the size of previous
size, duration, and total energy release of avalanches. THwmerical simulations. We also establish a wider range of
main purpose of this paper is to obtain improved estimates o¢xponents for existing models and increase the number of
scaling exponents of a range of SOC models in order tdlifferent models for which accurate exponents are known. In
classify them into universality classes, test theoretical predicaddition we test the theoretical interrelationships of Zhang
tions, and provide improved values for use in applications. [6], Christensen and Olani¥], and Robinsorj8] and com-
The early systems used to study SOC behavior were modPare the analytical results of Vespignatial. [9] and Ivash-
els of sandpiles that were driven to instability by the additionkevich[10] with numerical results. It is verified that for these
of grains of sand and relaxed through slippage of sand dowmodels if two exponents are known, then the remaining ex-
the pile when the local slope became too steep. Since thepPnents can be accurately determined analytically, provided
SOC has also been applied to various phenomena rangirie two chosen exponents collectively involve both spatial
from earthquake$2] to solar flare§3] and mountain ava- and temporal scalings. We also discuss differences between
lanched4]. the continuous(real valuedl Zhang [6] height-triggered
Kadanoffet al. [5] found that sandpile models lie within model, the standard discreténteger valuefl BTW [13]
broad universality classes, with all models in a given clasdieight-triggered model, and the modified continuous model
disp|aying the same Sca“ng exponents. Zhwigjevemped introduced by Diaz-GuiIerél4]. Differences in the redistri-
a simple analytical model that could explain several of thebution rule causes different distributions of the field on the
observed exponents for a particular universality class. Thedattice [14] and break-point behavior in some of the expo-
results were modified and extended by Christensen an@ents. Despite this the dynamic exponents of the different
Olami[7] and also by Robinsof8], who studied both scalar- models appear to lie in the same universality class.
field and vector-field SOC in addition to extending the ana- In Sec. Il we introduce the SOC models considered in this
lytic derivation to a number of other measurable exponentsvork. In Sec. Ill we discuss scaling exponents and the theo-
Renormalization group methods have also been used bigtical relationships between them. In Sec. IV we present the
Vespignaniet al. [9] and |Vashkevicli]_0] to make ana|ytic results of numerical simulations and discuss their implica-
estimates for exponentg for a particu|ar two-dimensionations. Our results in this section are Compared with previous
(2D) sandpile-type model. simulations, theoretical interrelationships and renormaliza-
To verify the theoretical results and to classify modelstion group estimates. We conclude in Sec. V.
into universality classes numerically it is necessary to obtain
a wider range of exponents than has previously been done
and to calculate both known and new exponents to a greater
In this section we outline the SOC models considered in
this paper. All the models involve driving and relaxation of a
*Electronic addresss: edney@physics.usyd.edu.au field that is analogous to the sand in a sandpile. SOC models
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must involve three featuresl3]. (i) The system must be d-dimensional rectangular grid. In the case of curvature trig-
driven via the addition of field incrementg.g., grains of gering the field is redistributed by setting

sand. (i) The system must have a local critical triggering

condition such that when a region satisfies the condition it
relaxes(e.g., in a sandpile, if the slope at a particular point
becomes too great, the sand will slide to neighboring re-
gions. (iii) The system must be able to relax and return itself 1

to below the critical condition, by redistributing the field to Fi=Fi+ g7 P(F). ()
neighboring regions and conserving a quantity analogous to

the energy of the fielde.g., in a sandpile sand slides until it \yhich also conserves the field.

settles in positions such that the slope is everywhere less that Relaxation of an unstable site may cause adjacent sites to
the critical slopg. become unstable and these locations will then also relax. An
The SOC models used here are cellular automatons Ofyalanche of relaxations can thus occur that is allowed to
two- or three-dimensional square or cubic grids of $ilen  proceed until all sites are stable before the next field incre-
which aD-component continuous vector fiekdis defined at  ment is added.
each point. Our models differ from the majority of similar  our work on both curvature-triggered and height-
models in the literatur¢7,12,13,1% in that our models use triggered models uses open boundary conditions Wit0
the continuous field model introduced by Zhaf] and a o the houndary, beyond which the field is lost to the system.
random component to the field increment. The models arg, the numerical work in Sec. IV we examine the eight dif-
driven by adding a field incremeigt at a randomly chosen  ferent models obtained by considering two and three dimen-
site, with sions, vector and scalar cases, and height and curvature trig-
gering. In order to gauge the effects of slight changes to the
F—F+g @) redistribution rules, we also examine a variation of the con-
o ) , . ) tinuous Zhang[6] height-triggered model, introduced by
at this site. The increment is a random variable with mearpja;-Guilera[14]. Instead of resetting the field at an unstable
values of its various components given by site to zero, this model reduces the field by the critical value
and redistributes the critical field equally among the 2D
p, n=1 neighboring sites. This model corresponds more closely to
Gn=10, n>1, (2)  the redistribution rules of the original discrete BTW3]
model and is discussed in more detail in Sec. IV.

Fan=Fnn ®(F), (4)

- 2d+1

where u is a constant. Each component gfalso has an
additive random part uniformly distributed betweemr and
A. The componeny; is chosen to be the only component  |n this section we define the physical quantities whose
with a nonzero mean. This can be done without loss of genscalings are of interest. We also briefly review the theoretical
erality because a coordinate rotation can always be made iaterrelationships between their scaling exponents. In Sec. IV
bring (g) into the form(2). In this work we only consider these relationships are tested against numerical results for the
models with a two-component vector field. eight models introduced in Sec. lIl.

In this paper we primarily examine models with two dif-  The physical quantities of interest to us all measure as-
ferent relaxation conditions. The first relaxation condition,pects of avalanches triggered when an initial site becomes
described as height triggered, is satisfied when the additioonstable and distributes the field to neighboring sites, which
of a field increment causgB| to exceed a critical valuén may then also relax. We consider the processes beginning
the sandpile case this corresponds to the height of the pilwhen one site becomes unstable and ending when all sites
exceeding a critical valye This model is the same as the become stable again to constitute a single avalanche. The
model introduced by Zhanif]. The second relaxation con- following physical quantities are defined for each avalanche.
dition, described as curvature triggered, is satisfied when th@) The areaa is the total number of different sites that be-
magnitude of the local field “curvature”|f?F| in the con-  come unstabléactive. (ii) The total number of activations
tinuum limit) becomes greater than a critical value. In theof sites iss. This differs from the area in that it accounts for
discrete case the quanti®(F;), which plays the role of multiple activations of some site§ii) The duration ig. This
curvature, is defined onddimensional square or cubic grid is the number of iterations necessary to allow the system to

Ill. THEORY

by relax to an stable configuratiofiv) The radiusr is defined
to be[8]
F
®(F)=F-2 57, 3 10
| r=rot 552 [MaxR)—min(R)], )

which is the discrete analog §FF. In both cases the field is

redistributed so that the quantity upon which the triggering isvhere R; is the ith component ofR and the maxima and
based [F| for height triggering and®(F;)| for curvature minima are taken over all active sitéat locationsR). This
triggering would be reset to zero in the absence of any othedefinition uses the “taxicab” metric to determine the dis-
relaxations. This is done in the height-triggered case by retance between the furthest separated points in the avalanche.
distributing the field equally to the 2D neighboring sites on aThis will give the correct radius for a spherical avalanche,
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but will differ by a factor of (21) ~* for a (rare straight line (ay—4)+4
avalanche, consisting of a single line of active sites. fhe T a—s p small
term adjusts the radius so that a single element avalanche has  , = ! (13
radius equal to the radius of a spherical avalanche of unit P md(a—4)+2(a—2)+4d b large
volume, but has negligible effect for large avalanch&k a;—2+d(a;—17) ' '
(v) The maximum powep is defined as the maximum num-
ber of sites simultaneously active during the avalanche. =2

A number of theoretical interrelationships between SOC 6= , (14
scaling exponents have been derived by Zhgig Chris- a—2
tensen and Olam(i7], and Robinsor{8]. These allow the
calculation of the full range of exponents from only two a— T p small
measured ones. We define a set of exponegtso describe a—2'
the scaling of the probability distributioB(Q) of some ava- Op= 44l r—2 (19
lanche quantityQ, with ———— " plarge,

d a—2
D(Q)~Q* . (7
For the special case of the area exponeptwe write a, L a small
= 7, which is consistent with previous notation. A second set Ss=1{ d+1 2 large (16)
of exponentsd, relates the different physical quantities to d g€,
the areaa. These are defined by
~3° 1
Q~a%. ® 5=3. 17)
We may also define the dynamic exponent found by many
previous authors by
S IV. NUMERICAL RESULTS

Z:

5 ©

We have simulated the models outlined in Sec. Il using
cellular automatons on square and cubic grids. We review
If the exponentsr and a are known then it is also possible the basis of these calculations in Sec. IV A and present the
to determine the value foéq, giving [8] results for height-triggered and curvature-triggered models in

5 Secs. IV B and IV C, respectively.
—
dq= ag-2" (10

A. General

Below the critical dimension we may treat the avalanches as The models studied here were driven until a statistical
spatially compact objects. Doing this one finds the relationequilibrium developed between driving and relaxation. This
ship a~r9 between the area and radiusr, giving 6,  was achieved by ensuring that the average mass over time
=1/d. It is then possible to express all the exponents folwas constant. Curvature-triggered models took longer to
these models, below the critical dimension, in terms of anycome to equilibrium than the comparable height-triggered
two measured exponents, as long as the two exponents chmodels, with the largest models requiring the order of 1000
sen collectively involve at lead6,8] one spatial and one times as many field increments to be added to become stable
temporal characteristic of the system. We can thus expressompared to the height-triggered models. This is consistent
all exponents in terms of and «;, for example. with the result that height-triggered models n&2¢N?) in-

The powerp can be expressed as the time derivative ofcrements to come to equilibrium, whereas curvature-
the total number of activations at the boundary of the avatriggered models typically requir@®(N*), as found by
lanche as the area increases, plus the increase due to old sifdanna[19], despite the slightly different relaxation rule. As
reactivating[6,8]. For small avalanches the activations ona result, curvature-triggered models were necessarily run on
the boundary dominate, while for larger avalanches reactivasmaller grid sizes. The distributions are generated by looking
tions account for the majority of the number of total activa-at 1 avalanches for most grid sizes, with double this being
tions. This results in a change in the physics between the twased for the largest grid sizes for each model.
regimes and causes breakpoints to appear in the scalings of While exponents of sandpiles with larger grid sizes than

a, p and related quantities. presented here have been repoffied, 15,16 previously, it
If we take T anda, as our two basic exponents we find the should be noted that, with the exception of the 2D height
interrelationship$6—8] triggered mode[16], these have been for discrete models
and not for the continuous height- and curvature-triggered
7 a small models studied here. The latter are more physically realistic
qo={ m+2 (11) models of continuous systems. The question of whether they
s i1 a large, are in the same universality class as discrete ¢foesvhich

there is considerable evidenf®8,16,17) is a question that
has to be settled elsewhere by numerical simulations of both
a,=2+d(7—2), (12 types.
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FIG. 3. Extrapolation of the for the scalar 2D height-triggered

FIG. 1. Scatter plot of the number of activatisigersus area model.

for the 2D height-triggered model.
each region separately. We denote the exponents by the sub-

The exponen®,, is obtained by plotting the values of an scriptsu andl, respectively.

avalanche quantityQ against the corresponding values of
areaa from the largest size model, producing a scatter plot
like that shown in Fig. 1. Because of the high density of |n this section we discuss the differences between several
results in the smal&range of the scatter plots it is necessarycontinuous and discrete 2D models and their effects on SOC
to weight the fit so that each range of area contributephysics before presenting our results for the continuous
equally to the fit and it is not dominated by the numerouszhang model in detail.

smalla data. The exponentg is determined from a distri-

bution obtained by binning th@ values of many avalanches 1. Comparison of continuous and discreteD2models

againstQ as shown in Fig. 2. The critical exponents for each

size model are determined by least-squares fits to these plo@ere were introduced by Zhaiig] and have previously been

Each fit is made to a suitable subrange of the available datl%und to have exponents that lie in the same universality
so that the upper and lower scales of the model, and ang%é

B. Height-triggered models

The continuous height-triggered models primarily studied

. ass as the original discrete BTW height-triggered model
breakpoint, do not strongly affect the calculated exponent. | 8,14.,15. However, Diaz-Guilera[14] noted that the

has been nqted by other authors.that the measurgd expone ang model is not just a continuous version of the original
are a fun(;tlon of the system 5i445,16,18 18 with a., BTW model. In the Zhang model, the field at a site that
=anFTK/INY, whereay is the exponent measured at a par-pq|,yes is reduced to zero, whereas in the BTW model the
tlpular gn_d sizeN. Fitting our finiteN results t0 an expres-  gaiq at an active site is reduced only by the critical value and
sion of this form, we can exirapolate o .obtam as in Fig. S0 in some cases may have a nonzero field remaining after
3. It has been found by Ben-Hur and Bihqf] that thed  rolaxation. Diaz-Guiler@14] found that making this change
e.xponents are not strongly effected by Sy$te”? gzeonclu- to the Zhang model caused large differences in the distribu-
sion that our results supparso extrapolation is not neces- o of the field on the lattice, but, despite noting that the
sary; instead, the exponent from the largest simulation iy mode| contains an extra symmetry in the redistribution
used. The effect of a breakpoint can be seen in Fig. 1, herﬁjles, could not find any significant differences in exponents
we obtain the uppeflarge avalancheand lower(small aVa-  of his numerical simulations. Using an effective-medium
lanche$ exponents by performing the least-squares fit OVelhathod, Diaz-Guilera also showed analyticd®g] that the

two models should lie in the same universality class despite
LA L R B B B B B the extra symmetry in the BTW model. In contrast, more
recent work by Blancharat al. [21] implies that models
where a fixed value of the field is transferred in a relaxation
(BTW) should have different properties from models where
the whole field is redistributed on relaxati¢fhang.

One difference between the BTW and Zhang models is
the existence or lack of breakpoints in the observed power
laws. As mentioned previously, Robinsg8] found break-
points in the power laws underlying some of the exponents
of the Zhang model, notably;~1 for a<100 andss~1.5
t for a=1000. The breakpoints in the power laws were found

6 to be independent of grid size and hence a real feature of the

dynamics. The present work reconfirms these results. Corre-
sponding simulations performed both here and by others

FIG. 2. Unnormalized distributioB (a) of the areaaforthe 2D [11,15 do not find this kind of breakpoint behavior in the
height-triggered model. standard BTW model. Similarly, using the modified Zhang

N I N S N T O U O O I |

logyo D(a)
S = NW Rt

logip a
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TABLE I. Numerically calculated critical exponents and other quantities for height-triggered
models. Column 1 is taken from beck and Usaddl18].

Quantity Value

d 2 2 2 3 3
field scalar scalar vector scalar vector
N 2048 400 400 80 80

T 2.338+-0.015 2.32-0.03 2.30:0.04 2.34-0.03 2.35-0.02
ay 2.41+0.04 2.38:0.06 2.610.03 2.60:0.03
ap 2.85+0.06 2.79:0.06 2.8%0.03 2.83:0.04
ap, 2.40+0.06 2.43:0.03

ag 2.282+0.010 2.29-0.03 2.29-0.04 2.34-0.03 2.34-0.03
a; 2.682+0.018 2.58-0.05 2.53-0.06 2.50-0.05 2.55-0.06
& 0.61+0.04 0.6G-0.04 0.53-0.04 0.540.04
Jp, 0.96+0.06 0.99-0.06 0.610.07 0.62-0.08
Jp, 0.54+0.08 0.540.09 0.56-0.05 0.55-0.07
6su 1.54+0.06 1.57-0.06 1.15-0.05 1.13-0.05
Js, 1.01+0.02 1.010.02 1.010.01 1.00:-0.01
S 0.49+0.02 0.49:0.02 0.35:0.02 0.36:0.02

Universality

class A A A B B

model proposed by Diaz-Guilefd4], we find plots almost lanche will be larger in the 3D case than in the 2D case;
identical to the standard BTW model fewvs a. Thus break- however, the maximum radius will be smaller in the 3D case.
points seem to be a feature of the Zhang relaxation rile ( The results in Table | show the exponents obtained from
—0) for unstable sites, but do not appear for the BTW re-numerical simulations of the four height-triggered models.
laxation rule E—E—E,). Note that the quoted error values are the maximum of the
To further explore thes, exponent we look at the condi- Standard deviation of the slope of the line from the least-
tional probability distributionP(s|a). Libeck and Usadel Sduares fitand the typical variation in the exponent measured
[15] found that for the discrete BTW modét(s|a) was over successive long time intervals. Fluctuations persist even
distributed asymmetrically against the boundarya. This on the I_onge_st time scales owing to the power-law temporal
meant that the scaling relationship-a® was not well de- correlations in the SOC state. For the scalar 2D height-

fined since this relationship requires the conditional probabil;grggirmeg ;T;(O%?:evr:/?s ?cl)?oc:)nrglugr(iesg;leszﬁigltt?]é)sgbglr(e[%fgtaine d
ity P(s|a) to be strongly peaked around the expectation poner P

. . .~ on a larger grid size than ours.
valueE(s|a). In our simulations of the Zhang model we find

. ; ; o . As in [16] we find that the exponent varies ag= 7.,
that in regions below the breakpoint the conditional probabil- nooo o : :
ity is strongly peaked where=a and is therefore asymmet- +k/N" with n=1 for the 2D height-triggered model. We use

ric as in the BTW case. For values@fbove the breakpoint, sIX d|fferent g”d. size¢50, 100, 150, 200, .300' and 40t@r
however, we find thaP(s|a) is peaked strongly and sym- the 2D height-triggered models to determine the extrapolated

metrically around the expectation val&és|a) and therefore ex_pone_nts. For the 3D. he|ght-tr|g_gereq models we find 'ghat
! i S : n=2 gives the best fit to a straight line and we use five
the exponent is well defined in this region.

. . different grid sizeq10, 20, 30, 50 , and 8Qo extrapolate
Although substantial differences do occur between th%rom. Thg extrapglate d exponent for forathe scalgr 2D

Zhang model and the BTW model, particularly with regard eiaht-triaaered model is shown in Fid. 3

to the existence of breakpoints in power-law distributions ap g 99 9. 2. .

small &, there is considerable evidenfkl,1q that the dy- Inbthe 2D scaéar .ct:;':lse magyt of the C(ia):)ponent§ n Ta:ahle !
L : ’ can be compared with ones determined by previous authors.

namic exponents at largeimply that both models belong to The valuer=2.32+0.03 obtained here is in good agreement

the same universality clagsee below for a comparisprin . - . N :
the remainder of this work we look at continuous models tha ith the_ value_zr—2.338t 0.015 obtained by Lbeck using
rger simulation$16]. The values are larger than the earlier

trigger when a site becomes unstable and relaxes completely. : -
For height-triggered models this corresponds to the ZhanfFSults Of Robinson8] (7=2.22+0.05) and Janogil7] (7
model. =2.2), but this is to be expected since those were obtained

using smaller grid sizes and were not extrapolated to find the
2. Exponents determined from our simulations value at infinite grid size. Vespignast al. found a valuer
: =2.254 [9] and lvashkevich foundr=2.248 [10] using
In this section we discuss results from 2D and 3D, scalarenormalization group methods. Both these estimates appear
and vector height-triggered models. The 2D models argo be too low based on the results here and other published
simulated on grid sizes up to 48Gl00 and the correspond- results[15,16|.
ing 3D models are simulated on a grid sizes up to<80 From Table | and Eq(9) we find a value for the dynamic
X 80. This means that the typical maximum area of an avaexponentz=1.24+0.05. This differs from the value af
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TABLE II. Numerically calculated critical exponents and other quantities for curvature-
triggered models.

Quantity Value

d 2 2 3 3
field scalar vector scalar vector
N 200 200 80 80

T 2.42+0.03 2.45-0.03 2.470.02 2.470.02
a; 2.59+0.03 2.64-0.03 2.69-0.04 2.68-0.04
ap 2.63+0.05 2.73-0.05 3.03:0.05 3.01%-0.10
ag 2.33+0.03 2.36:0.04 2.47-0.04 2.47-0.04
a; 2.65+0.05 2.73-0.05 2.810.05 2.82-0.05
S 0.79+0.04 0.79-0.04 0.59-0.03 0.59-0.03
p 0.76+0.04 0.75-0.04 0.59-0.07 0.59-0.04
Js, 1.10+0.05 1.11-0.06 1.03:0.02 1.02:0.02
J, 1.59+0.03 1.58-0.04

S 0.51+0.02 0.50:0.02 0.38:0.02 0.34£0.02

Universality

class C C D D

= (d+2)/3 found analytically by Zhanfs] and Diaz-Guilera both scalar and vector, in terms af and = with the excep-
[14], but is in agreement with the value af=3 found by  tion of op and a,, where the agreement is poorer. These
Majumdar and Dhal22] using the equivalence between the latter exponents are the most uncertain in our simulations
sandpile and thg— 0 limit of the Potts model. due to the relatively short power laws generated. The exis-
Table | shows that almost all the exponents of the 2Dtence of a poorly defined breakpoint also complicates the
vector height-triggered model are the same as those for theumerical analysis. Hence the apparent discrepancies may
scalar model to within uncertaintié¢the only marginally sig- reflect these numerical uncertainties rather than real differ-
nificant difference occurs i, where the two values lie just ences.
outside each others uncertainjieJhis indicates that the The exponents for the 3D models do not satisfy Egs.
vector model lies in the same universality class as the scaldi0)—(16) as closely as those in 2D models. Significant de-
model, in agreement with the conclusions of RobinE28l.  viations occur ind,, &5, a,, andas . These discrepancies

(Note that we neglect the difference in thg values be- may be the result of power-law fits being restricted to small
cause these pertain only to small avalanches. ranges or poorly defined breakpoints, as suggested above for
There are fewer existing results for the 3D height-the 2D case. In particulag, is more poorly defined numeri-
triggered models in the literature than for the equivalent 2Dcally in the 3D models than the 2D models because of the
models. The results of RobinsdB] are in agreement with shorter linear scale of the model. The disagreement in the
the improved exponents presented here to within the uncews exponent may be caused by the finite size of the model

tainties. The valuer=2.35 obtained by Balet al. [13], 7 cutting off the power law before the upper exponent com-
=2.35 ands;=0.56 obtained by Ben-Hur and Bihafil],  pletely develops.
and r=2.33 obtained by Libeck and Usadel are also consis-
tent with the values displayed in Table I. A much higher
value for 7=2.55 was found by Jano$ll7], but this was
obtained using a much smaller grid than was used in obtain- The exponents for curvature-triggered models are shown
ing the other results. It is seen that a,, also in agreement in Table Il in the same format as Table |. The simulations are
with previous work11,18. With the exception of Robinson performed on smaller grids than their comparable height-
[8] and Janosj17], these simulations were of discrete mod- triggered counterparts due to the much longer period of time
els, so these results support the claim that the continuous amequired for curvature-triggered models to reach a steady
discrete models lie in the same universality class. No breaktate. Breakpoints iy, and 5, were not apparent for the
points, such as were observed clearly in the continuous 2Durvature-triggered models, so only one exponent is listed
models, are seen in thel3nodels. This extends the claim of for each quantity in Table II.
[18] that 7= ¢ for discrete 3D models to also cover con- To determine the extrapolations to obtain infinite-system
tinuous 3D models. exponents we use five different grid siz&®, 75, 100, 150,

As in the 2D case, the 3D vector height-triggered modelnd 200 for the 2D curvature-triggered models a¢id®, 20,
has scaling exponents that indicate that it lies in the sam80, 50, and 8p for the 3D curvature-triggered models.
universality class as the corresponding scalar model. This i8gain, as in the height-triggered models, we find thatl

C. Curvature-triggered models

again in agreement with the results of Robin$28]. gives the best fit for the 2D models amd=2 for the 3D
The theoretical predictiond0)—(16) of Zhang[6], Chris-  models.
tensen and Olani7], and Robinsori8] accurately predict Table 1l shows the results for the curvature-triggered

the range of exponents for the 2D height-triggered modelsnodels. It can be seen that both the scalar and vector models
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TABLE lIl. Comparison of critical exponents for the 3D ones and similar to the ones actually seen here.
curvature-triggered model, obtained by leti al. [24] and in the The theoretical predictions of Zhai§], Christensen and
present work. Olami[7], and Robinsori8] do not in general give as accu-

rate predictions for exponents of the curvature-triggered
Exponent Luet al. Present work models as for those of the height-triggered models. In the 2D
ay 2.88 2.68-0.04 models we find that predictions ef,, 5,, anda, are par-
a 2.51 2.45-0.04 ticularly poor, while numerical and theoretical valuesagf,
a, 2.86 3.03-0.05 ag, andé, differ by slightly more than the quoted errors. The

3D exponents agree better with the theory, but the agreement
is still poor in several cases, particularly f6f, which, as
mentioned earlier, is less well defined in the 3D models.
have exponents generally match to yvithﬁn each other’s limitrpere is also some disagreement &grand &;, which differ

of error. There are some discrepancies in the 2D models oty theoretical estimates by slightly more than their esti-
ap ande, , which have only overlapping uncertainties; how- ya1aq errors. It appears that the exponents in the 3D models

ever, these exponents, as noted earlier, are the most INACCle particularly affected by the relatively small system size.

rately m red in our models. Th - ; . . i
ately measu ed in ou _ode_ S ese _results_ then are Corllarger systems will be required to obtain more accurate veri-
sistent with the models lying in same universality class for

given d. This result extends to curvature-triggered modelaﬂcatlon of the results of Zhanf], Christensen and Olami

Robinson’s[23] conclusion that scalar and vector height-sm’ and Robinsori8].

triggered models of given were in the same universality

class. A comparison of Tables | and Il shows that height-

tr_iggered and curv_ature-triggered models of a given D lie in V. CONCLUSION
different universality classes.

Fewer values for exponents for curvature-triggered mod- : . : : . :
els have been previously published than for height-triggere%o%(tar;ﬂ\éfs r;]l;r\?:rg:eE\elns::n;lrJrliitéoglsﬂ c::ﬂg'?g;ifiggﬁ:e type
models. The 2D curvature-triggered model has been exam- . . . g expo-
ined by Kadanofet al.[5] and Mannd19]; however, it must nents have been _determmed in a uniform way. In_ all cases
be noticed that both these models used a different relaxatiof<CeP! th? 2D he|ght-t_r|ggered model,_ our S|mulat|ons have
rule from the one used here. In analogy to the Zhang modd]€en carried out of grids larger than in previous works for
for height triggered sandpiles, we reduce the curvature at th'€Se models. The 2D height-triggered results dféak[16]
relaxed site to zero, whereas Kadaneffal. [5] and Manna he}ve also been mg:lud_ed for completgness as they are ob-
[19], in analogy with the BTW height-triggered moddl], tained on larger grid sizes. We also discuss differences be-
reduced the curvature at the critical site by a constant amouriveen the Zhang6] model and the BTW modélL], in par-

(see Sec. IVB for a comparison with the height-triggeredticular the appearance of breakpoint behavior in some
case. exponents of the Zhang model.

Manna found values=2.3, a;=2.57, and an exponent  Our results for scaling exponents are in general agreement
x=6;/8s=0.53 in our notation. These appear to be consiswith other published values including those ofdack[16]
tent with our results ofs=2.36+0.04, a;,=2.62+0.05, and and in most cases have been calculated to a greater degree of
x=6,/65,=0.52, particularly as Manna did not quote uncer-accuracy than in previous work. Unlike many previously
tainties in the former results. Most of the exponents ofpublished results, our results also include uncertainty esti-
Kadanoffet al.[5] are not comparable to the ones used heremates, which allow a clearer comparison between the expo-
however, they did obtainx,=2.50+0.10, which is larger nents we have determined and values determined elsewhere
than the values presented here. This discrepancy appearsitothe literature.
be the result of the smaller maximum grid si2é= 64) used One of our major conclusions is that scalar and vector
in their work and is consistent with the trend in our work. models lie in the same universality class for both height-

For the 3D curvature-triggered case some exponents havdggered and curvature-triggered cases. This generalizes
been calculated numerically by Let al. [24] and are com- Robinson’s[23] results for height-triggered models to the
pared to the present ones in Table Ill. These exponentsurvature-triggered case. In contrast, a change from height-
match reasonably closely in the caseaqf, falling just in-  to curvature-triggering does change the universality class, as
side the error quoted in our results. In the casesofand does a change from two- to three-dimensional systems for
ap, the values of Liet al. [24] lie well outside our quoted either type of triggering.
error. However, if we compare models of the same sizes we In both the 2D height- and curvature-triggered models we
find that the correspondence for each between the models fifid that there is a difference between the exponenasid
closer, especially in the case af. Lu et al. [24] gave re- «4. This difference does not appear in the 3D models where
sults only for a specific grid size for each of their models andr= «5. In the 2D height-triggered model we find that, while
no error estimates on their values, so it is difficult to judgethe dynamic exponents tend to be the same as in the discrete
exactly how close a match these values are. If there is 8TW model, there are differences in tié&g exponent.
discrepancy its cause is still unclear, but may be due to an The numerically derived scaling exponents were com-
undetected breakpoint in the, plots in the model of Lu pared with the theoretical estimates from E@—(16) de-
et al.[24] or ours. Such a breakpoint would lead to values ofrived on the basis of various scaling assumpti¢fs8].
exponents intermediate between the true upper and lowédnly in the 2D height-triggered model do we find compel-
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ling agreement between the numerically derived exponentsuggests that the remaining discrepancies may be resolvable
and the theoretical predictiorf0)—(16). In the 3D height- by larger-scale simulations in the future.

triggered and the 2D and 3D curvature-triggered models the

majority of the exponents are consistent with theoretical pre- ACKNOWLEDGMENTS

dictions; however, there are discrepancies in some expo-
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