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Scaling exponents of sandpile-type models of self-organized criticality
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Critical scaling exponents for eight sandpile-type systems that display self-organized criticality are deter-
mined numerically. These results are consistent with previous results where available and provide a more
extensive, accurate, and consistent set of exponents than has previously been published for the set of models
overall. Several theoretical interrelationships between the various exponents are verified.
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I. INTRODUCTION

The concept of self-organized criticality~SOC! was intro-
duced by Bak, Tang, and Wiesenfeld@1# to explain the fre-
quent occurrence of 1/f noise in nature. Typically SOC oc
curs when a system driven toward instability reaches
critical state in which there is a statistical balance betw
driving and relaxation. This state exhibits sporadic relaxat
via avalanches of energy release. These avalanches ha
power-law distribution of sizes and establish power-law s
tial and temporal correlations in the system. The SOC sta
characterized by power-law distributions and correspond
scaling exponents of various physical quantities such as
size, duration, and total energy release of avalanches.
main purpose of this paper is to obtain improved estimate
scaling exponents of a range of SOC models in order
classify them into universality classes, test theoretical pre
tions, and provide improved values for use in application

The early systems used to study SOC behavior were m
els of sandpiles that were driven to instability by the addit
of grains of sand and relaxed through slippage of sand d
the pile when the local slope became too steep. Since
SOC has also been applied to various phenomena ran
from earthquakes@2# to solar flares@3# and mountain ava-
lanches@4#.

Kadanoffet al. @5# found that sandpile models lie withi
broad universality classes, with all models in a given cl
displaying the same scaling exponents. Zhang@6# developed
a simple analytical model that could explain several of
observed exponents for a particular universality class. Th
results were modified and extended by Christensen
Olami @7# and also by Robinson@8#, who studied both scalar
field and vector-field SOC in addition to extending the an
lytic derivation to a number of other measurable expone
Renormalization group methods have also been used
Vespignaniet al. @9# and Ivashkevich@10# to make analytic
estimates for exponents for a particular two-dimensio
~2D! sandpile-type model.

To verify the theoretical results and to classify mod
into universality classes numerically it is necessary to ob
a wider range of exponents than has previously been d
and to calculate both known and new exponents to a gre
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level of accuracy. Increasing the number and accuracy
known exponents will allow theoretical estimates to be tes
more rigorously and allow for differentiation between mo
els that lie in different universality classes but have exp
nents that are close to one another. An example of this
studied by Ben-Hur and Biham@11#, who showed that the
two-state model introduced by Manna@12# lay in a different
universality class from the original Bak-Tang-Wiesenfe
~BTW! model@1#, contrary to Manna’s original claim. Many
other models in use also have few accurately known ex
nents.

In this paper we improve the accuracy of known exp
nents for several models by increasing the size of previ
numerical simulations. We also establish a wider range
exponents for existing models and increase the numbe
different models for which accurate exponents are known
addition we test the theoretical interrelationships of Zha
@6#, Christensen and Olami@7#, and Robinson@8# and com-
pare the analytical results of Vespignaniet al. @9# and Ivash-
kevich@10# with numerical results. It is verified that for thes
models if two exponents are known, then the remaining
ponents can be accurately determined analytically, provi
the two chosen exponents collectively involve both spa
and temporal scalings. We also discuss differences betw
the continuous~real valued! Zhang @6# height-triggered
model, the standard discrete~integer valued! BTW @13#
height-triggered model, and the modified continuous mo
introduced by Diaz-Guilera@14#. Differences in the redistri-
bution rule causes different distributions of the field on t
lattice @14# and break-point behavior in some of the exp
nents. Despite this the dynamic exponents of the differ
models appear to lie in the same universality class.

In Sec. II we introduce the SOC models considered in t
work. In Sec. III we discuss scaling exponents and the th
retical relationships between them. In Sec. IV we present
results of numerical simulations and discuss their impli
tions. Our results in this section are compared with previo
simulations, theoretical interrelationships and renormali
tion group estimates. We conclude in Sec. V.

II. MODELS

In this section we outline the SOC models considered
this paper. All the models involve driving and relaxation of
field that is analogous to the sand in a sandpile. SOC mo
5395 © 1998 The American Physical Society
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must involve three features@13#. ~i! The system must be
driven via the addition of field increments~e.g., grains of
sand!. ~ii ! The system must have a local critical triggerin
condition such that when a region satisfies the conditio
relaxes~e.g., in a sandpile, if the slope at a particular po
becomes too great, the sand will slide to neighboring
gions!. ~iii ! The system must be able to relax and return its
to below the critical condition, by redistributing the field
neighboring regions and conserving a quantity analogou
the energy of the field~e.g., in a sandpile sand slides until
settles in positions such that the slope is everywhere less
the critical slope!.

The SOC models used here are cellular automatons
two- or three-dimensional square or cubic grids of sideN, on
which aD-component continuous vector fieldF is defined at
each point. Our models differ from the majority of simila
models in the literature@7,12,13,15# in that our models use
the continuous field model introduced by Zhang@6# and a
random component to the field increment. The models
driven by adding a field incrementg at a randomly chosen
site, with

F→F1g ~1!

at this site. The increment is a random variable with me
values of its various components given by

^gn&5H m, n51

0, n.1, ~2!

where m is a constant. Each component ofg also has an
additive random part uniformly distributed between2D and
D. The componentg1 is chosen to be the only compone
with a nonzero mean. This can be done without loss of g
erality because a coordinate rotation can always be mad
bring ^g& into the form ~2!. In this work we only consider
models with a two-component vector field.

In this paper we primarily examine models with two d
ferent relaxation conditions. The first relaxation conditio
described as height triggered, is satisfied when the add
of a field increment causesuFu to exceed a critical value~in
the sandpile case this corresponds to the height of the
exceeding a critical value!. This model is the same as th
model introduced by Zhang@6#. The second relaxation con
dition, described as curvature triggered, is satisfied when
magnitude of the local field ‘‘curvature’’ (u¹2Fu in the con-
tinuum limit! becomes greater than a critical value. In t
discrete case the quantityF(Fi), which plays the role of
curvature, is defined on ad-dimensional square or cubic gri
by

F~Fi !5Fi2(
n,n

Fnn

2d
, ~3!

which is the discrete analog of¹2F. In both cases the field is
redistributed so that the quantity upon which the triggering
based (uFu for height triggering anduF(Fi)u for curvature
triggering! would be reset to zero in the absence of any ot
relaxations. This is done in the height-triggered case by
distributing the field equally to the 2D neighboring sites on
it
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d-dimensional rectangular grid. In the case of curvature tr
gering the field is redistributed by setting

Fnn5Fnn2
2d

2d11
F~Fi ! , ~4!

Fi5Fi1
1

2d11
F~Fi ! , ~5!

which also conserves the field.
Relaxation of an unstable site may cause adjacent site

become unstable and these locations will then also relax.
avalanche of relaxations can thus occur that is allowed
proceed until all sites are stable before the next field inc
ment is added.

Our work on both curvature-triggered and heigh
triggered models uses open boundary conditions withF50
on the boundary, beyond which the field is lost to the syste
In the numerical work in Sec. IV we examine the eight d
ferent models obtained by considering two and three dim
sions, vector and scalar cases, and height and curvature
gering. In order to gauge the effects of slight changes to
redistribution rules, we also examine a variation of the co
tinuous Zhang@6# height-triggered model, introduced b
Diaz-Guilera@14#. Instead of resetting the field at an unstab
site to zero, this model reduces the field by the critical va
and redistributes the critical field equally among the 2
neighboring sites. This model corresponds more closely
the redistribution rules of the original discrete BTW@13#
model and is discussed in more detail in Sec. IV.

III. THEORY

In this section we define the physical quantities who
scalings are of interest. We also briefly review the theoret
interrelationships between their scaling exponents. In Sec
these relationships are tested against numerical results fo
eight models introduced in Sec. III.

The physical quantities of interest to us all measure
pects of avalanches triggered when an initial site becom
unstable and distributes the field to neighboring sites, wh
may then also relax. We consider the processes begin
when one site becomes unstable and ending when all
become stable again to constitute a single avalanche.
following physical quantities are defined for each avalanc
~i! The areaa is the total number of different sites that b
come unstable~active!. ~ii ! The total number of activations
of sites iss. This differs from the area in that it accounts fo
multiple activations of some sites.~iii ! The duration ist. This
is the number of iterations necessary to allow the system
relax to an stable configuration.~iv! The radiusr is defined
to be @8#

r 5r 01
1

2d(i 51

d

@max~Ri !2min~Ri !#, ~6!

where Ri is the ith component ofR and the maxima and
minima are taken over all active sites~at locationsR!. This
definition uses the ‘‘taxicab’’ metric to determine the di
tance between the furthest separated points in the avalan
This will give the correct radius for a spherical avalanch
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PRE 58 5397SCALING EXPONENTS OF SANDPILE-TYPE MODELS . . .
but will differ by a factor of (2d)21 for a ~rare! straight line
avalanche, consisting of a single line of active sites. Ther 0
term adjusts the radius so that a single element avalanche
radius equal to the radius of a spherical avalanche of
volume, but has negligible effect for large avalanches@8#.
~v! The maximum powerp is defined as the maximum num
ber of sites simultaneously active during the avalanche.

A number of theoretical interrelationships between SO
scaling exponents have been derived by Zhang@6#, Chris-
tensen and Olami@7#, and Robinson@8#. These allow the
calculation of the full range of exponents from only tw
measured ones. We define a set of exponentsaQ to describe
the scaling of the probability distributionD~Q! of some ava-
lanche quantityQ, with

D~Q!;Q12aQ. ~7!

For the special case of the area exponentaa we write aa
5t, which is consistent with previous notation. A second
of exponentsdQ relates the different physical quantities
the areaa. These are defined by

Q;adQ. ~8!

We may also define the dynamic exponent found by m
previous authors by

z5
d t

d r
. ~9!

If the exponentst andaQ are known then it is also possibl
to determine the value fordQ , giving @8#

dQ5
t22

aQ22
. ~10!

Below the critical dimension we may treat the avalanches
spatially compact objects. Doing this one finds the relati
ship a;r d between the areaa and radiusr, giving d r
51/d. It is then possible to express all the exponents
these models, below the critical dimension, in terms of a
two measured exponents, as long as the two exponents
sen collectively involve at least@6,8# one spatial and one
temporal characteristic of the system. We can thus exp
all exponents in terms oft anda t , for example.

The powerp can be expressed as the time derivative
the total number of activations at the boundary of the a
lanche as the area increases, plus the increase due to old
reactivating@6,8#. For small avalanches the activations
the boundary dominate, while for larger avalanches react
tions account for the majority of the number of total activ
tions. This results in a change in the physics between the
regimes and causes breakpoints to appear in the scalin
a, p and related quantities.

If we taket anda t as our two basic exponents we find th
interrelationships@6–8#

as5H t, a small

td12

d11
, a large, ~11!

a r521d~t22!, ~12!
has
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ap5H t~a t24!14

a t2t
, p small

td~a t24!12~a t22!14d

a t221d~a t2t!
, p large,

~13!

d t5
t22

a t22
, ~14!

dp5H a t2t

a t22
, p small

d11

d
2

t22

a t22
, p large,

~15!

ds5H 1, a small

d11

d
, a large,

~16!

d r5
1

d
. ~17!

IV. NUMERICAL RESULTS

We have simulated the models outlined in Sec. III usi
cellular automatons on square and cubic grids. We rev
the basis of these calculations in Sec. IV A and present
results for height-triggered and curvature-triggered model
Secs. IV B and IV C, respectively.

A. General

The models studied here were driven until a statisti
equilibrium developed between driving and relaxation. T
was achieved by ensuring that the average mass over
was constant. Curvature-triggered models took longer
come to equilibrium than the comparable height-trigge
models, with the largest models requiring the order of 10
times as many field increments to be added to become st
compared to the height-triggered models. This is consis
with the result that height-triggered models needO(N2) in-
crements to come to equilibrium, whereas curvatu
triggered models typically requireO(N4), as found by
Manna@19#, despite the slightly different relaxation rule. A
a result, curvature-triggered models were necessarily run
smaller grid sizes. The distributions are generated by look
at 105 avalanches for most grid sizes, with double this be
used for the largest grid sizes for each model.

While exponents of sandpiles with larger grid sizes th
presented here have been reported@11,15,16# previously, it
should be noted that, with the exception of the 2D heig
triggered model@16#, these have been for discrete mode
and not for the continuous height- and curvature-trigge
models studied here. The latter are more physically reali
models of continuous systems. The question of whether t
are in the same universality class as discrete ones~for which
there is considerable evidence@6,8,16,17#! is a question that
has to be settled elsewhere by numerical simulations of b
types.
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The exponentdQ is obtained by plotting the values of a
avalanche quantityQ against the corresponding values
areaa from the largest size model, producing a scatter p
like that shown in Fig. 1. Because of the high density
results in the small-a range of the scatter plots it is necessa
to weight the fit so that each range of area contribu
equally to the fit and it is not dominated by the numero
small-a data. The exponentaQ is determined from a distri-
bution obtained by binning theQ values of many avalanche
againstQ as shown in Fig. 2. The critical exponents for ea
size model are determined by least-squares fits to these p
Each fit is made to a suitable subrange of the available
so that the upper and lower scales of the model, and
breakpoint, do not strongly affect the calculated exponen
has been noted by other authors that the measured expo
are a function of the system size@15,16,18,19#, with a`

5aN1k/Nn, whereaN is the exponent measured at a pa
ticular grid sizeN. Fitting our finite-N results to an expres
sion of this form, we can extrapolate to obtaina` as in Fig.
3. It has been found by Ben-Hur and Biham@11# that thed
exponents are not strongly effected by system size~a conclu-
sion that our results support!, so extrapolation is not neces
sary; instead, the exponent from the largest simulation
used. The effect of a breakpoint can be seen in Fig. 1; h
we obtain the upper~large avalanches! and lower~small ava-
lanches! exponents by performing the least-squares fit o

FIG. 1. Scatter plot of the number of activationss versus areaa
for the 2D height-triggered model.

FIG. 2. Unnormalized distributionD(a) of the areaa for the 2D
height-triggered model.
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each region separately. We denote the exponents by the
scriptsu and l, respectively.

B. Height-triggered models

In this section we discuss the differences between sev
continuous and discrete 2D models and their effects on S
physics before presenting our results for the continu
Zhang model in detail.

1. Comparison of continuous and discrete 2D models

The continuous height-triggered models primarily stud
here were introduced by Zhang@6# and have previously bee
found to have exponents that lie in the same universa
class as the original discrete BTW height-triggered mo
@6,8,14,15#. However, Diaz-Guilera@14# noted that the
Zhang model is not just a continuous version of the origi
BTW model. In the Zhang model, the field at a site th
relaxes is reduced to zero, whereas in the BTW model
field at an active site is reduced only by the critical value a
so in some cases may have a nonzero field remaining a
relaxation. Diaz-Guilera@14# found that making this chang
to the Zhang model caused large differences in the distr
tion of the field on the lattice, but, despite noting that t
BTW model contains an extra symmetry in the redistributi
rules, could not find any significant differences in expone
of his numerical simulations. Using an effective-mediu
method, Diaz-Guilera also showed analytically@20# that the
two models should lie in the same universality class des
the extra symmetry in the BTW model. In contrast, mo
recent work by Blanchardet al. @21# implies that models
where a fixed value of the field is transferred in a relaxat
~BTW! should have different properties from models whe
the whole field is redistributed on relaxation~Zhang!.

One difference between the BTW and Zhang models
the existence or lack of breakpoints in the observed po
laws. As mentioned previously, Robinson@8# found break-
points in the power laws underlying some of the expone
of the Zhang model, notablyds'1 for a<100 andds'1.5
for a>1000. The breakpoints in the power laws were fou
to be independent of grid size and hence a real feature o
dynamics. The present work reconfirms these results. Co
sponding simulations performed both here and by oth
@11,15# do not find this kind of breakpoint behavior in th
standard BTW model. Similarly, using the modified Zha

FIG. 3. Extrapolation of thet for the scalar 2D height-triggered
model.
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TABLE I. Numerically calculated critical exponents and other quantities for height-trigg
models. Column 1 is taken from Lu¨beck and Usadel@18#.

Quantity Value

d 2 2 2 3 3
field scalar scalar vector scalar vector
N 2048 400 400 80 80

t 2.33860.015 2.3260.03 2.3060.04 2.3460.03 2.3560.02
a t 2.4160.04 2.3860.06 2.6160.03 2.6060.03
apl

2.8560.06 2.7960.06 2.8160.03 2.8360.04
apu

2.4060.06 2.4360.03
as 2.28260.010 2.2960.03 2.2960.04 2.3460.03 2.3460.03
a r 2.68260.018 2.5860.05 2.5360.06 2.5060.05 2.5560.06
d t 0.6160.04 0.6060.04 0.5360.04 0.5460.04
dpu

0.9660.06 0.9960.06 0.6160.07 0.6260.08
dpl

0.5460.08 0.5460.09 0.5660.05 0.5560.07
dsu

1.5460.06 1.5760.06 1.1560.05 1.1360.05
dsl

1.0160.02 1.0160.02 1.0160.01 1.0060.01
d r 0.4960.02 0.4960.02 0.3560.02 0.3660.02

Universality
class A A A B B
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model proposed by Diaz-Guilera@14#, we find plots almost
identical to the standard BTW model fors vs a. Thus break-
points seem to be a feature of the Zhang relaxation ruleE
→0) for unstable sites, but do not appear for the BTW
laxation rule (E→E2Ec).

To further explore theds exponent we look at the cond
tional probability distributionP(sua). Lübeck and Usade
@15# found that for the discrete BTW modelP(sua) was
distributed asymmetrically against the boundarys5a. This
meant that the scaling relationships;ads was not well de-
fined since this relationship requires the conditional proba
ity P(sua) to be strongly peaked around the expectat
valueE(sua). In our simulations of the Zhang model we fin
that in regions below the breakpoint the conditional proba
ity is strongly peaked wheres5a and is therefore asymme
ric as in the BTW case. For values ofa above the breakpoint
however, we find thatP(sua) is peaked strongly and sym
metrically around the expectation valueE(sua) and therefore
the exponent is well defined in this region.

Although substantial differences do occur between
Zhang model and the BTW model, particularly with rega
to the existence of breakpoints in power-law distributions
small a, there is considerable evidence@11,16# that the dy-
namic exponents at largea imply that both models belong to
the same universality class~see below for a comparison!. In
the remainder of this work we look at continuous models t
trigger when a site becomes unstable and relaxes comple
For height-triggered models this corresponds to the Zh
model.

2. Exponents determined from our simulations

In this section we discuss results from 2D and 3D, sca
and vector height-triggered models. The 2D models
simulated on grid sizes up to 4003400 and the correspond
ing 3D models are simulated on a grid sizes up to 80380
380. This means that the typical maximum area of an a
-

l-
n

l-

e

t

t
ly.
g

r
e

-

lanche will be larger in the 3D case than in the 2D ca
however, the maximum radius will be smaller in the 3D ca
The results in Table I show the exponents obtained fr
numerical simulations of the four height-triggered mode
Note that the quoted error values are the maximum of
standard deviation of the slope of the line from the lea
squares fit and the typical variation in the exponent measu
over successive long time intervals. Fluctuations persist e
on the longest time scales owing to the power-law tempo
correlations in the SOC state. For the scalar 2D heig
triggered model we also include the results of Lu¨beck @16#
for some exponents for comparison since these are obta
on a larger grid size than ours.

As in @16# we find that the exponent varies astN5t`

1k/Nn with n51 for the 2D height-triggered model. We us
six different grid sizes~50, 100, 150, 200, 300, and 400! for
the 2D height-triggered models to determine the extrapola
exponents. For the 3D height-triggered models we find t
n52 gives the best fit to a straight line and we use fi
different grid sizes~10, 20, 30, 50 , and 80! to extrapolate
from. The extrapolated exponent fort for the scalar 2D
height-triggered model is shown in Fig. 3.

In the 2D scalar case many of the exponents in Tab
can be compared with ones determined by previous auth
The valuet52.3260.03 obtained here is in good agreeme
with the valuet52.33860.015 obtained by Lu¨beck using
larger simulations@16#. The values are larger than the earli
results of Robinson@8# (t52.2260.05) and Janosi@17# (t
52.2), but this is to be expected since those were obtai
using smaller grid sizes and were not extrapolated to find
value at infinite grid size. Vespignaniet al. found a valuet
52.254 @9# and Ivashkevich foundt52.248 @10# using
renormalization group methods. Both these estimates ap
to be too low based on the results here and other publis
results@15,16#.

From Table I and Eq.~9! we find a value for the dynamic
exponentz51.2460.05. This differs from the value ofz
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TABLE II. Numerically calculated critical exponents and other quantities for curvat
triggered models.

Quantity Value
d 2 2 3 3

field scalar vector scalar vector
N 200 200 80 80

t 2.4260.03 2.4560.03 2.4760.02 2.4760.02
a t 2.5960.03 2.6460.03 2.6960.04 2.6860.04
ap 2.6360.05 2.7360.05 3.0360.05 3.0160.10
as 2.3360.03 2.3660.04 2.4760.04 2.4760.04
a r 2.6560.05 2.7360.05 2.8160.05 2.8260.05
d t 0.7960.04 0.7960.04 0.5960.03 0.5960.03
dp 0.7660.04 0.7560.04 0.5960.07 0.5960.04
dsl

1.1060.05 1.1160.06 1.0360.02 1.0260.02
dsu

1.5960.03 1.5860.04
d r 0.5160.02 0.5060.02 0.3860.02 0.3460.02

Universality
class C C D D
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5 (d12)/3 found analytically by Zhang@6# and Diaz-Guilera
@14#, but is in agreement with the value ofz5 5

4 found by
Majumdar and Dhar@22# using the equivalence between th
sandpile and theq→0 limit of the Potts model.

Table I shows that almost all the exponents of the
vector height-triggered model are the same as those for
scalar model to within uncertainties~the only marginally sig-
nificant difference occurs ina r where the two values lie jus
outside each others uncertainties!. This indicates that the
vector model lies in the same universality class as the sc
model, in agreement with the conclusions of Robinson@23#.
~Note that we neglect the difference in theapl

values be-
cause these pertain only to small avalanches.!

There are fewer existing results for the 3D heig
triggered models in the literature than for the equivalent
models. The results of Robinson@8# are in agreement with
the improved exponents presented here to within the un
tainties. The valuet52.35 obtained by Baket al. @13#, t
52.35 andd t50.56 obtained by Ben-Hur and Biham@11#,
andt52.33 obtained by Lu¨beck and Usadel are also cons
tent with the values displayed in Table I. A much high
value for t52.55 was found by Janosi@17#, but this was
obtained using a much smaller grid than was used in obt
ing the other results. It is seen thatt'as , also in agreemen
with previous work@11,18#. With the exception of Robinson
@8# and Janosi@17#, these simulations were of discrete mo
els, so these results support the claim that the continuous
discrete models lie in the same universality class. No br
points, such as were observed clearly in the continuous
models, are seen in the 3d models. This extends the claim o
@18# that t5as for discrete 3D models to also cover co
tinuous 3D models.

As in the 2D case, the 3D vector height-triggered mo
has scaling exponents that indicate that it lies in the sa
universality class as the corresponding scalar model. Th
again in agreement with the results of Robinson@23#.

The theoretical predictions~10!–~16! of Zhang@6#, Chris-
tensen and Olami@7#, and Robinson@8# accurately predict
the range of exponents for the 2D height-triggered mod
he

lar
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both scalar and vector, in terms ofa t andt with the excep-
tion of dp and ap , where the agreement is poorer. The
latter exponents are the most uncertain in our simulati
due to the relatively short power laws generated. The e
tence of a poorly defined breakpoint also complicates
numerical analysis. Hence the apparent discrepancies
reflect these numerical uncertainties rather than real dif
ences.

The exponents for the 3D models do not satisfy E
~10!–~16! as closely as those in 2D models. Significant d
viations occur indp , dsu

, a r , andasu
. These discrepancie

may be the result of power-law fits being restricted to sm
ranges or poorly defined breakpoints, as suggested abov
the 2D case. In particular,a r is more poorly defined numeri
cally in the 3D models than the 2D models because of
shorter linear scale of the model. The disagreement in
asu

exponent may be caused by the finite size of the mo
cutting off the power law before the upper exponent co
pletely develops.

C. Curvature-triggered models

The exponents for curvature-triggered models are sho
in Table II in the same format as Table I. The simulations
performed on smaller grids than their comparable heig
triggered counterparts due to the much longer period of t
required for curvature-triggered models to reach a ste
state. Breakpoints inap and dp were not apparent for the
curvature-triggered models, so only one exponent is lis
for each quantity in Table II.

To determine the extrapolations to obtain infinite-syst
exponents we use five different grid sizes~50, 75, 100, 150,
and 200! for the 2D curvature-triggered models and~10, 20,
30, 50, and 80! for the 3D curvature-triggered models
Again, as in the height-triggered models, we find thatn51
gives the best fit for the 2D models andn52 for the 3D
models.

Table II shows the results for the curvature-trigger
models. It can be seen that both the scalar and vector mo
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have exponents generally match to within each other’s li
of error. There are some discrepancies in the 2D models
ap anda r , which have only overlapping uncertainties; how
ever, these exponents, as noted earlier, are the most ina
rately measured in our models. These results then are
sistent with the models lying in same universality class fo
given d. This result extends to curvature-triggered mod
Robinson’s@23# conclusion that scalar and vector heigh
triggered models of givend were in the same universalit
class. A comparison of Tables I and II shows that heig
triggered and curvature-triggered models of a given D lie
different universality classes.

Fewer values for exponents for curvature-triggered m
els have been previously published than for height-trigge
models. The 2D curvature-triggered model has been ex
ined by Kadanoffet al. @5# and Manna@19#; however, it must
be noticed that both these models used a different relaxa
rule from the one used here. In analogy to the Zhang mo
for height triggered sandpiles, we reduce the curvature at
relaxed site to zero, whereas Kadanoffet al. @5# and Manna
@19#, in analogy with the BTW height-triggered model@1#,
reduced the curvature at the critical site by a constant am
~see Sec. IV B for a comparison with the height-trigger
case!.

Manna found valuesas52.3, a t52.57, and an exponen
x5d t /ds50.53 in our notation. These appear to be cons
tent with our results ofas52.3660.04,a t52.6260.05, and
x5d t /ds50.52, particularly as Manna did not quote unce
tainties in the former results. Most of the exponents
Kadanoffet al. @5# are not comparable to the ones used he
however, they did obtainas52.5060.10, which is larger
than the values presented here. This discrepancy appea
be the result of the smaller maximum grid size (N564) used
in their work and is consistent with the trend in our work

For the 3D curvature-triggered case some exponents h
been calculated numerically by Luet al. @24# and are com-
pared to the present ones in Table III. These expone
match reasonably closely in the case ofaa , falling just in-
side the error quoted in our results. In the cases ofa t and
ap , the values of Luet al. @24# lie well outside our quoted
error. However, if we compare models of the same sizes
find that the correspondence for each between the mode
closer, especially in the case ofa t . Lu et al. @24# gave re-
sults only for a specific grid size for each of their models a
no error estimates on their values, so it is difficult to jud
exactly how close a match these values are. If there
discrepancy its cause is still unclear, but may be due to
undetected breakpoint in theap plots in the model of Lu
et al. @24# or ours. Such a breakpoint would lead to values
exponents intermediate between the true upper and lo

TABLE III. Comparison of critical exponents for the 3D
curvature-triggered model, obtained by Luet al. @24# and in the
present work.

Exponent Luet al. Present work

a t 2.88 2.6860.04
as 2.51 2.4560.04
ap 2.86 3.0360.05
it
or

cu-
n-

a
s

t-
n

-
d
-

on
el
he

nt
d

-

-
f
;

to

ve

ts

e
is

d

a
n

f
er

ones and similar to the ones actually seen here.
The theoretical predictions of Zhang@6#, Christensen and

Olami @7#, and Robinson@8# do not in general give as accu
rate predictions for exponents of the curvature-trigge
models as for those of the height-triggered models. In the
models we find that predictions ofap , dp , anda r are par-
ticularly poor, while numerical and theoretical values ofa r ,
as , andd t differ by slightly more than the quoted errors. Th
3D exponents agree better with the theory, but the agreem
is still poor in several cases, particularly ford r , which, as
mentioned earlier, is less well defined in the 3D mode
There is also some disagreement fordp andd t , which differ
from theoretical estimates by slightly more than their es
mated errors. It appears that the exponents in the 3D mo
are particularly affected by the relatively small system si
Larger systems will be required to obtain more accurate v
fication of the results of Zhang@6#, Christensen and Olam
@7#, and Robinson@8#.

V. CONCLUSION

Extensive numerical simulations of eight sandpile ty
SOC models have been carried out and their scaling ex
nents have been determined in a uniform way. In all ca
except the 2D height-triggered model, our simulations ha
been carried out of grids larger than in previous works
these models. The 2D height-triggered results of Lu¨beck@16#
have also been included for completeness as they are
tained on larger grid sizes. We also discuss differences
tween the Zhang@6# model and the BTW model@1#, in par-
ticular the appearance of breakpoint behavior in so
exponents of the Zhang model.

Our results for scaling exponents are in general agreem
with other published values including those of Lu¨beck @16#
and in most cases have been calculated to a greater degr
accuracy than in previous work. Unlike many previous
published results, our results also include uncertainty e
mates, which allow a clearer comparison between the ex
nents we have determined and values determined elsew
in the literature.

One of our major conclusions is that scalar and vec
models lie in the same universality class for both heig
triggered and curvature-triggered cases. This general
Robinson’s@23# results for height-triggered models to th
curvature-triggered case. In contrast, a change from hei
to curvature-triggering does change the universality class
does a change from two- to three-dimensional systems
either type of triggering.

In both the 2D height- and curvature-triggered models
find that there is a difference between the exponentst and
as . This difference does not appear in the 3D models wh
t5as . In the 2D height-triggered model we find that, whi
the dynamic exponents tend to be the same as in the dis
BTW model, there are differences in theda exponent.

The numerically derived scaling exponents were co
pared with the theoretical estimates from Eqs.~9!–~16! de-
rived on the basis of various scaling assumptions@6–8#.
Only in the 2D height-triggered model do we find compe
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ling agreement between the numerically derived expone
and the theoretical predictions~10!–~16!. In the 3D height-
triggered and the 2D and 3D curvature-triggered models
majority of the exponents are consistent with theoretical p
dictions; however, there are discrepancies in some ex
nents. The largest discrepancies occur for the exponents
are least well determined numerically, whereas the num
cally better-defined exponents are predicted correctly. T
ts

e
-

o-
hat
ri-
is

suggests that the remaining discrepancies may be resolv
by larger-scale simulations in the future.
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